The Third pole

Brief Introduction:The Qinghai-Tibet Plateau, known as the 'three poles' on the earth, has been an important area for the study of global environmental change and has played a profound role in regulating the ecology, environment and climate of the entire planet. It has always been a hot spot of concern to the international community. Under the background of global warming, the elements of the cryosphere such as the three-pole glaciers, frozen soils, and frozen-melt lakes have undergone significant changes. The glaciers are rapidly retreating and the layers of frozen soils are thickened. For a long time, China has carried out systematic and multidisciplinary research on the third pole of the world, which is dominated by the Qinghai-Tibet Plateau, and has formed a rich research accumulation. Compared with the Qinghai-Tibet Plateau, China's current level of scientific research in the Arctic and Arctic regions is relatively low, especially the problems of weak research foundation, scattered research direction, and no system and low level. With the impact of climate warming...

Publish Datetime:2020-06-23

Number of Datasets:164

  • Meteorological data of the integrated observation and research station of Ngari for desert environment (2009-2017)

    The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.

    2020-06-24 0 View Details

  • China meteorological assimilation driving datasets for the SWAT model Version 1.0 (2008-2016)

    CMADS V1.0(The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.0)Version of the data set introduces the technology of STMAS assimilation algorithm . It was constructed using multiple technologies and scientific methods, including loop nesting of data, projection of resampling models, and bilinear interpolation. The CMADS series of datasets can be used to drive various hydrological models, such as SWAT, the Variable Infiltration Capacity (VIC) model, and the Storm Water Management model (SWMM). It also allows users to conveniently extract a wide range of meteorological elements for detailed climatic analyses. Data sources for the CMADS series include nearly 40,000 regional automatic stations under China’s 2,421 national automatic and business assessment centres. This ensures that the CMADS datasets have wide applicability within the country, and that data accuracy was vastly improved. The CMADS series of datasets has undergone finishing and correction to match the specific format of input and driving data of SWAT models. This reduces the volume of complex work that model builders have to deal with. An index table of the various elements encompassing all of East Asia was also established for SWAT models. This allows the models to utilize the datasets directly, thus eliminating the need for any format conversion or calculations using weather generators. Consequently, significant improvements to the modelling speed and output accuracy of SWAT models were achieved. Most of the source data in the CMADS datasets are derived from CLDAS in China and other reanalysis data in the world. The integration of air temperature, air pressure, humidity, and wind velocity data was mainly achieved through the LAPS/STMAS system. Precipitation data were stitched using CMORPH’s global precipitation products and the National Meteorological Information Center’s data of China (which is based on CMORPH’s integrated precipitation products). The latter contains daily precipitation records observed at 2,400 national meteorological stations and the CMORPH satellite’s inversion precipitation products.The inversion algorithm for incoming solar radiation at the ground surface makes use of the discrete longitudinal method by Stamnes et al.(1988)to calculate radiation transmission. The resolutions for CMADS V1.0, V1.1, V1.2, and V1.3 were 1/3°, 1/4°, 1/8°, and 1/16°, respectively. In CMADS V1.0 (at a spatial resolution of 1/3°), East Asia was spatially divided into 195 × 300 grid points containing 58,500 stations. Despite being at the same spatial resolution as CMADS V1.0, CMADS V1.1 contains more data, with 260 × 400 grid points containing 104,000 stations. For both versions, the stations’ daily data include average solar radiation, average temperature, average pressure, maximum and minimum temperature, specific humidity, cumulative precipitation, and average wind velocity. The CMADS comprises other variables for any hydrological model(under 'For-other-model' folder ): Daily Average Temperature, Daily Maximum Temperature, Daily Minimum Temperature, Daily cumulative precipitation (20-20h), Daily average Relative Humidity, Daily average Specific Humidity, Daily average Solar Radiation, Daily average Wind, and Daily average Atmospheric Pressure. Introduction to metadata of CMADS CMADS storage path description:(CMADS was divided into two datesets) 1.CMADS-V1.0\For-swat\ --specifically driving the SWAT model 2.CMADS-V1.0\For-other-model\ --specifically driving the other hydrological model(VIC,SWMM,etc.) CMADS--\For-swat-2009\ folder contain:(Station\ and Fork\) 1).Station\ Relative-Humidity-58500\ Daily average relative humidity(fraction) Precipitation-58500\ Daily accumulated 24-hour precipitation(mm) Solar radiation-58500\ Daily average solar radiation(MJ/m2) Tmperature-58500\ Daily maximum and minimum temperature(℃) Wind-58500\ Daily average wind speed(m/s) Where R, P, S, T, W+ dimensional grid number - the number of longitude grid is the station in the above five folders respectively.(Where R,P,S,T,W respective Daily average relative humidity,Daily cumulative precipitation(24h),Daily mean solar radiation(MJ/m2),Daily maximum and minimum temperature(℃) and Daily mean wind speed (m/s)) respectively.Data format is (.dbf) 2).Fork\ (Station index table over East Asia) PCPFORK.txt (Precipitation index table) RHFORK.txt (Relative humidity index table) SORFORK.txt (Solar radiation index table) TMPFORK.txt (Temperature index table) WINDFORK.txt (Wind speed index) CMADS--\For-swat-2012\ folder contain:(Station\ and Fork\) Storage structure is consistency with \For-swat- 2009\.However, all the data in this directory are only available in TXT format and can be readed by SWAT2012. 3)\For-other-model\ (Includes all weather input data required by the any hydrologic model (daily).) Atmospheric-Pressure-txt\ Daily average atmospheric pressure(hPa) Average-Temperature-txt\ Daily average temperature(℃) Maximum-Temperature-txt\ Daily maximum temperature(℃) Minimum-Temperature-txt\ Daily minimum temperature(℃) Precipitation-txt\ Daily accumulated 24-hour precipitation (mm) Relative-Humidity-txt\ Daily average relative humidity(fraction) Solar-Radiation-txt\ Daily average solar radiation(MJ/m2) Specific-Humidity-txt\ Daily average Specific Humidity(g/kg) Wind-txt\ Daily average wind speed(m/s) Data storage information: data set storage format is .dbf and .txt Other data information: Total data: 33.6GB Occupied space: 35.2GB Time: From year 2008 to year 2016 Time resolution: Daily Geographical scope description: East Asia Longitude: 60°E The most east longitude: 160°E North latitude: 65°N Most southern latitude: 0°N Number of stations: 58500 stations Spatial resolution: 1/3 * 1/3 * grid points Vertical range: None

    2020-06-23 0 View Details

  • The Basic datasets of Urumqi river basin in Chinese Cryospheric Information System

    Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System contains three basic databases of different research regions. The basic database of Urumqi river basin is one of three basic databases, which covers the Urumqi river basin in tianshan mountain, east longitude 86-89 °, and north latitude 42-45 °, mainly containing the following data: 1. Cryospheric data.Include: Distribution of glacier no. 1 and glacier no. 2; 2. Natural environment and resources.Include: Terrain digital elevation: elevation, slope, slope direction; Hydrology: current situation of water resource utilization;Surface water; Surface characteristics: vegetation type;Soil type;Land resource evaluation map;Land use status map; 3. Social and economic resources: a change map of human action; Please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc" and "Chinese Cryospheric Information System data dictionary. Doc".

    2020-06-23 0 View Details

  • Basic datasets of the Tibetan Plateau in Chinese Cryospheric Information System

    Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".

    2020-06-23 0 View Details

  • Annual average ground temperature distribution map of Qinghai Tibet Plateau in 2010

    The annual mean ground temperature data of 233 boreholes and a series of remote sensing data products related to permafrost mapping were collected around 2010. A new annual mean ground temperature estimation scheme based on the arithmetic mean of the morning and afternoon star ground temperature and a new missing data interpolation method was developed. The annual mean ground temperature of 1km remote sensing of the Qinghai Tibet Plateau in 2004-2018 was produced. Table temperature and freezing number of products. The MODIS Snow Day product was reconstructed, the Global LAnd Surface Satellite(GLASS) leaf area index product, the soil sand content, soil clay content, soil silt content, soil organic matter and soil bulk density data product of the SoilGrids 250 m, the second version of soil moisture product output by cldas of China Meteorological Administration and the automatic integration of nearly 40,000 regions were collected. Integrated products of weather station and FY2 / EMSIP precipitation products. By using the geographical weighted regression method, the annual average ground temperature distribution map with 1km resolution, which represents the 2010's Qinghai Tibet Plateau, is estimated by combining the annual average ground temperature borehole observation and a variety of remote sensing and non remote sensing data. The results of 58 independent boreholes show that the root mean square error is 0.63 ℃, and the deviation is 0.02 ± 0.79 ℃.

    2020-06-16 0 View Details

  • The combined 1000 yr temperature reconstruction records derived from a stalagmite and tree rings (1000 A.D.-2000 A.D.)

    The application of general circulation models (GCMs) can improve our understanding of climate forcing. In addition, longer climate records and a wider range of climate states can help assess the ability of the models to simulate climate differences from the present. First, we try to find a substitute index that combines the effects of temperature in different seasons and then combine it with the Beijing stalagmite layer sequence and the Qilian tree-ring sequence to carry out a large-scale temperature reconstruction of China over the past millennium. We then compare the results with the simulated temperature record based on a GCM and ECH-G for the past millennium. Based on the 31-year average, the correlation coefficient between the simulated and reconstructed temperature records was 0.61 (with P < 0.01). The asymmetric V-type low-frequency variation revealed by the combination of the substitute index and the simulation series is the main long-term model of China's millennium-scale temperature. Therefore, solar irradiance and greenhouse gases can account for most of the low-frequency variation. To preserve low-frequency information, conservative detrended methods were used to eliminate age-related growth trends in the experiment. Each tree-ring series has a negative exponential curve installed while retaining all changes. The four fields of the combined 1000-yr (1000 AD-2000 AD) reconstructed temperature records derived from stalagmite and tree-ring archives (excel table) are as follows: 1) Year 2) Annual average temperature reconstruction 3) Reconstructed temperature deviation 4) Simulated temperature deviation

    2020-06-09 0 View Details

  • Inventory dataset of glacial lakes in the Sikkim Region, India (2000)

    This glacial lake inventory receives joint support from International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 1. This glacial lake inventory referred to Landsat 4/5 (MSS, TM/1984/1999), Landsat 7 (TM & ETM+), IRS-1C, LISS-III (1995 IRS-1C), (1997 IRS-1D) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2000. 2. Glacial Lake Inventory Coverage: Tista Basin, Sikkim Region 3. Glacial Lake Inventory includes: glacial lake inventory, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 4. Projection parameter: Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Sikkim) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00’00” E Central parallel: 26°00’00” N Scale factor: 0.998786 Standard parallel 1: 23°09’28.17” N Standard parallel 2: 28°49’8.18” N Minimum X Value: 2545172 Maximum X Value: 2645240 Minimum Y Value: 1026436 Maximum Y Value: 1163523 For a detailed data description, please refer to the data file and report.

    2020-06-09 0 View Details

  • Inventory of glacial lakes in Pakistan (2003-2004)

    This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resource Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory adopts the Landsat remote sensing data and reflects the status of glacial lakes in the Pakistan region from 2003 to 2004. 2. In terms of spatial coverage, the glacial lake inventory covers the Swat, Chitral, Gilgit, Hunza, Shigar, Shyok, Upper, Indus, Shingo, Astor and Jhelum river basins in the upper reaches of the Indus River. 3. The glacial lake inventory data include the glacial lake code, glacial lake type, glacial lake area, distance between the glacier and the glacial lake, glaciers related to the glacial lake, etc. For detailed descriptions of the data, please refer to the data file and report.

    2020-06-09 0 View Details

  • Glacier inventory dataset of Nepal (2000)

    This glacier inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nation Environment Programme/Regional Resources Centre, Asia and The Pacific (UNEP/RRC-AP)。 1、The glacier inventory uses the remote sensing data of Landsat,reflecting the current status of glaciers in Nepal in 2000. 2、The spatial coverage of the glacier inventory: Nepal 3、Contents of the glacier inventory: glacier location, glacier code, glacier name, glacier area, glacier length, glacier thickness, glacier stocks, glacier type, glacier orientation, etc. 4、Data Projection: Grid Zone IIA Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 23°09'28.17"N Standard parallel 2: 28°49'8.18"N Minimum X Value: 1920240 Maximum X Value: 2651760 Minimum Y Value: 914398 Maximum Y Value: 1188720 Grid Zone IIB Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 21°30'00"N Standard parallel 2: 30°00'00"N Minimum X Value: 1823188 Maximum X Value: 2000644 Minimum Y Value: 1306643 Maximum Y Value: 1433476 For a detailed data description, please refer to the data file and report.

    2020-06-09 0 View Details

  • Glacial lake inventory of the Pumqu Basin in the Himalayan Region of China (2004)

    This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resources Centre for Asia and the Pacific (UNEP/RRC-AP), Cold and Arid Region Environmental and Engineering Research Institute (CAREERI). 9. This glacial lake cataloging uses Landsat (TM and ETM), Aster and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in the Himalayas in 2004. 10. Glacial lake catalogue coverage: the Himalayan region, Pumqu (Arun), Rongxer (Tama Koshi), Poiqu (Bhote-Sun Koshi), Jilongcangbu (Trishuli), Zangbuqin (Budhigandaki), Majiacangbu (Humla Karnali) and others. 11. Glacial Lake cataloging includes glacial lake cataloging, glacial lake type, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length and other attributes. 12. Data projection information: Projection: Transverse_Mercator False_Easting: 500000.000000 False_Northing: 0.000000 Central_Meridian: 87.000000 Scale_Factor: 0.999600 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: GCS_WGS_1984 Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_WGS_1984 Spheroid: WGS_1984 Semimajor Axis: 6378137.000000000000000000 Semiminor Axis: 6356752.314245179300000000 Inverse Flattening: 298.257223563000030000 For a detailed data description, please refer to the data file and report.

    2020-06-09 0 View Details

  • Inventory of glacial lakes in Bhutan (2000)

    This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resource Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory incorporates topographic map data and reflects the status of glacial lakes in the region in 2000. 2. The spatial coverage of the glacial lake inventory is as follows: Pa Chu Sub-basin, Mo Chu Sub-basin, Thim Chu Sub-basin, Pho Chu Sub-basin, Mangde Chu Sub-basin, Chamkhar Chu Sub-basin, Kuri Chu Sub-basin, Dangme Chu Sub-basin, Northern Basin, etc. 3. The glacial lake inventory includes the following data fields: glacial lake code, glacial lake types, glacial lake orientation, glacial lake width, glacial lake area, glacial lake depth, glacial lake length, etc. 4. Data projection: Projection: Polyconic Ellipsoid: Everest (India 1956) Datum: Indian (India, Nepal) False easting: 2,743,196.4 False northing: 914,398.80 Central meridian: 90°0'00'' E Central parallel: 26°0'00'' N Scale factor: 0.998786 For a detailed description of the data, please refer to the data file and report.

    2020-06-09 0 View Details

  • Passive microwave SSM/I brightness temperature dataset for China (1987-2007)

    This data set includes the microwave brightness temperatures obtained by the spaceborne microwave radiometer SSM/I carried by the US Defense Meteorological Satellite Program (DMSP) satellite. It contains the twice daily (ascending and descending) brightness temperatures of seven channels, which are 19H, 19V, 22V, 37H, 37V, 85H, and 85V. The Specialized Microwave Imager (SSM/I) was developed by the Hughes Corporation of the United States. In 1987, it was first carried into the space on the Block 5D-/F8 satellite of the US Defense Meteorological Satellite Program (DMSP) to perform a detection mission. In the 10 years from when the DMSP soared to orbit in 1987 to when the TRMM soared to orbit in 1997, the SSM/I was the world's most advanced spaceborne passive microwave remote sensing detection instrument, having the highest spatial resolution in the world. The DMSP satellite is in a near-polar circular solar synchronous orbit; the elevation is approximately 833 km, the inclination is 98.8 degrees, and the orbital period is 102.2 minutes. It passes through the equator at approximately 6:00 local time and covers the whole world once every 24 hours. The SSM/I consists of seven channels set at four frequencies, and the center frequencies are 19.35, 22.24, 37.05, and 85.50 GHz. The instrument actually comprises seven independent, total-power, balanced-mixing, superheterodyne passive microwave radiometer systems, and it can simultaneously measure microwave radiation from Earth and the atmospheric systems. Except for the 22.24 GHz frequency, all the frequencies have both horizontal and vertical polarization states. Some Eigenvalues of SSM/I Channel Frequency (GHz) Polarization Mode (V/H) Spatial Resolution (km * km) Footprint Size (km) 19V 19.35 V 25×25 56 19H 19.35 H 25×25 56 22V 22.24 V 25×25 45 37V 37.05 V 25×25 33 37H 37.05 H 25×25 33 85V 85.50 V 12.5×12.5 14 85H 85.50 H 12.5×12.5 14 1. File Format and Naming: Each group of data consists of remote sensing data files, .JPG image files and .met auxiliary information files as well as .TIM time information files and the corresponding .met time information auxiliary files. The data file names and naming rules for each group in the SSMI_Grid_China directory are as follows: China-EASE-Fnn-ML/HaaaabbbA/D.ccH/V (remote sensing data); China-EASE-Fnn -ML/HaaaabbbA/D.ccH/V.jpg (image file); China-EASE-Fnn-ML/HaaaabbbA/D.ccH/V.met (auxiliary information document); China-EASE-Fnn-ML/HaaaabbbA/D.TIM (time information file); and China-EASE- Fnn -ML/HaaaabbbA/D.TIM.met (time information auxiliary file). Among them, EASE stands for EASE-Grid projection mode; Fnn represents carrier satellite number (F08, F11, and F13); ML/H represents multichannel low resolution and multichannel high resolution; A/D stands for ascending (A) and descending (D); aaaa represents the year; bbb represents the Julian day of the year; cc represents the channel number (19H, 19V, 22V, 37H, 37V, 85H, and 85V); and H/V represents horizontal polarization (H) and vertical polarization (V). 2. Coordinate System and Projection: The projection method is an equal-area secant cylindrical projection, and the double standard latitude is 30 degrees north and south. For more information on EASE-GRID, please refer to http://www.ncgia.ucsb.edu/globalgrids-book/ease_grid/. If you need to convert the EASE-Grid projection method into a geographic projection method, please refer to the ease2geo.prj file, which reads as follows. Input Projection cylindrical Units meters Parameters 6371228 6371228 1 /* Enter projection type (1, 2, or 3) 0 00 00 /* Longitude of central meridian 30 00 00 /* Latitude of standard parallel Output Projection GEOGRAPHIC Spheroid KRASovsky Units dd Parameters End 3. Data Format: Stored as binary integers, each datum occupies 2 bytes. The data that are actually stored in this data set are the brightness temperatures *10, and after reading the data, they need to be divided by 10 to obtain true brightness temperature. 4. Data Resolution: Spatial resolution: 25 km, 12.5 km (SSM/I 85 GHz); Time resolution: day by day, from 1978 to 2007. 5. The Spatial Coverage: Longitude: 60°-140° east longitude; Latitude: 15°-55° north latitude. 6. Data Reading: Each group of data includes remote sensing image data files, .JPG image files and .met auxiliary information files. The JPG files can be opened with Windows image and fax viewers. The .met auxiliary information files can be opened with notepad, and the remote sensing image data files can be opened in ENVI and ERDAS software.

    2020-06-09 0 View Details

  • Permafrost map along at the 1:600 000 in the Tibet Highway (1983)

    The data are a digitized permafrost map along the Qinghai-Tibet Highway (1:600,000) (Boliang Tong, et al. 1983), which was compiled by Boliang Tong, shude Li, Jueying bu, and Guoqing Qiu from the Cold and Arid Regions Environmental and Engineering Research Institute of the Chinese Academy of Sciences (originally called the Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences) in 1981. The map aims to reflect the basic laws of permafrost distribution along the highway and its relationship with the main natural environmental factors. The basic data for the compilation of the map include hydrogeological and engineering geological survey results and maps along the Qinghai-Tibet Highway(1:200000) (First Hydrogeological Engineering Geological Brigade of Qinghai Province, Institute of Geomechanics of the Academy of Geological Science), the cryopedological research results of the Institute of Glaciology and Cryopedology of Chinese Academy of Sciences since 1960 in nine locations along the Qinghai-Tibet Highway (West Datan, Kunlun pass basin, Qingshuihe, Fenghuohe, Tuotuohe, the Sangma Basin, Buquhe, Tumengela, and Liangdaohe) and drilling data of the Golmud-Lhasa oil pipeline and aerial topographic data of the work area. Taking the 1:200000 topographic map as the working base map, a permafrost map was compiled, which was then downscaled to a 1:600000 map to ensure the accuracy of the map. To make up for the lack of data in a larger area along the line, the characteristics and principles of the frozen soils found in the nine frozen soil research points along the highway were applied to areas with the same geologic and geographical conditions; meanwhile, aerial photographs were used as supplements to the freeze-thaw geology and frozen soil characteristics. The permafrost map along the Qinghai-Tibet Highway (1:600,000) includes the annual average temperature contour map along the Qinghai-Tibet Highway (1:7,200,000) and the permafrost map along the Qinghai-Tibet Highway (1:600,000). The permafrost map along the Qinghai-Tibet Highway also contains information on permafrost types, lithology, frozen soil phenomena, types of through-melting zones, classification of frozen soil engineering, and geological structural fractures. These data contain only digitized permafrost information. The spatial coverage is from Daxitan on the Qinghai-Tibet Highway in the north to Sangxiong in the south and is nearly 800 kilometers long and 40-50 kilometers wide. The data set includes a vectorized and a scanned map of the permafrost map along the Qinghai-Tibet Highway. The attribute information of the map is as follows. A-1; Continuous permafrost; >0°C; remained as a frozen soil layer and isolation layer A-2; Continuous permafrost; 0~-0.5°C; 0-25 m A-3; Continuous permafrost; -0.5~-1.5°C; 25-60 m A-4; Continuous permafrost; -1.5~-3.5°C; 60-120 m A-5;Continuous permafrost;<-3.5°C;>120 m B-1; Island permafrost ground; Seasonal Frozen Ground; B-2; Continuous permafrost; >0°C; remained as a frozen soil layer and isolation layer B-3; Island permafrost extent; 0~-0.5°C; 0-25 m B-4; Island permafrost extent; -0.5~-1.5°C; 25-60 m B-5; Island permafrost extent; -1.5~-3.5°C; 60-120 m

    2020-06-09 0 View Details

  • Inventory of glacial lakes in Nepal (2000)

    This glacial lake inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nation Environment Programme/Regional Resources Centre, Asia and The Pacific (UNEP/RRC-AP). 1. The glacial lake inventory uses the remote sensing data of Landsat,reflecting the current status of glacial lakes larger than 0.01 square kilometers in Nepal in 2000. 2. The spatial coverage of the glacial lake inventory: Nepal 3. Contents of the glacial lake inventory: glacial lake code, glacial lake types, glacial lake area, distance between glacial lakes and the glaciers, related glaciers, etc. 4. Data Projection: Grid Zone IIA Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 23°09'28.17"N Standard parallel 2: 28°49'8.18"N Minimum X Value: 1920240 Maximum X Value: 2651760 Minimum Y Value: 914398 Maximum Y Value: 1188720 Grid Zone IIB Projection: Lambert conformal conic Ellipsoid: Everest (India 1956) Datum: India (India, Nepal) False easting: 2743196.40 False northing: 914398.80 Central meridian: 90°00'00"E Central parallel: 26°00'00"N Scale factor: 0.998786 Standard parallel 1: 21°30'00"N Standard parallel 2: 30°00'00"N Minimum X Value: 1823188 Maximum X Value: 2000644 Minimum Y Value: 1306643 Maximum Y Value: 1433476 For a detailed data description, please refer to the data file and report.

    2020-06-09 0 View Details

  • A China dataset of soil properties for land surface modeling

    The source data of this data set are 1:1 million Chinese soil maps and 8,595 soil profiles from the second soil census.The data include section depth, soil thickness, sand, silt, clay, gravel, bulk density, porosity, soil structure, soil color, pH value, organic matter, nitrogen, phosphorus, potassium, exchangeable cation amount, exchangeable hydrogen, aluminum, calcium, magnesium, potassium, sodium ion and root amount.The dataset also provides data quality control information. The data is in raster format with a spatial resolution of 30 arc seconds.To facilitate the use of CLM model, soil data is divided into 8 layers, with the maximum depth of 2.3 meters (i.e. 0- 0.045, 0.045- 0.091, 0.091- 0.166, 0.166- 0.289, 0.289- 0.493, 0.493- 0.829, 0.829- 1.383 and 1.383- 2.296 m) Data file description: 1 Soil profile depth PDEP.nc 2 Soil layer depth "LDEP.nc LNUM.nc" 3 pH Value (H2O) PH.nc 4 Soil Organic Matter SOM.nc 5 Total N TN.nc 6 Total P TP.nc 7 Total K TK.nc 8 Alkali-hydrolysable N AN.nc 9 Available P AP.nc 10 Available K AK.nc 11 Cation Exchange Capacity (CEC) CEC.nc 12 Exchangeable H+ H.nc 13 Exchangeable Al3+ AL.nc 14 Exchangeable Ca2+ CA.nc 15 Exchangeable Mg2+ MG.nc 16 Exchangeable K+ K.nc 17 Exchangeable Na+ NA.nc 18 Particle-Size Distribution Sand SA.nc Silt SI.nc Clay CL.nc 19 Rock fragment GRAV.nc 20 Bulk Density BD.nc 21 Porosity POR.nc 22 Color (water condition unclear) Hue Unh.nc Value Chroma Unc.nc 23 Dry Color Hue Dh.nc Value Chroma Dc.nc 24 Wet Color Hue Wh.nc Value Chroma Wc.nc 25 Dominant and Second Structure S1.nc SW1.nc RS.nc 26 Dominant and Second Consistency C1.nc CW1.nc RC.nc 27 Root Abundance Description R.nc

    2020-06-08 0 View Details

  • The frozen soil type map of Kazakhstan (1:10,000,000) (2000)

    The frozen soil type map of Kazakhstan (1:10,000,000) includes three .shp vector layers: 1, Polyline ranges.shp, indicating the extent of frozen soil; 2, Polygon kaz_perm.shp, frozen soil; 3, An attribute description Word file. The kaz_perm attribute table includes four fields: ID, REGION, SUBREGION, M_RANGE. Comparison of the main attributes: First, Area I. Altai-TienShan Second, Region: High mountains I.1. Altai, I.2. Saur-Tarbagatai, I.3.Dzhungarskyi, I.4. Northern Tien Shan, I.5. Western Tien Shan Intermountain depressions I.6. Zaysanskyi, I.7. Alakulskyi, I.8. Iliyskyi II. Western Siberian Second, Region: Planes II.1. Northern Kazakhstanskyi V. Western Kazakhstanskaya III. Kazakh small hills area IV. Turanskaya: IV.1. Turgayskyi IV.2. Near Aaralskyi IV.3. Chuysko-Syrdaryinskyi IV.4. South-Balkhashskyi V. Western Kazakhstanskaya: V.1. Mugodzhar-Uralskyi V.2. Near Caspian V.3. manghyshlak-Ustyrtskyi Third, Sub-region: I.1.1. Western Altai I.1.2. South Altai I.1.3. Kalbinskyi I.2.1. Tarbagatayskyi I.2.2. Saurskyi I.3.1. Nortern Dzhungarskyi I.3.2. Western Dzhungarskyi I.3.3. Southern Dzhungarskyi I.4.1. Kirgizskyi Alatau I.4.2. Zailiyskyi-Kungeyskyi I.4.3. Ketmenskyi I.4.4. Bayankolskyi I.5.1. Karatauskyi I.5.2. Talaso-Ugamskyi The layer projection information is as follows: GEOGCS["GCS_WGS_1984", DATUM["WGS_1984", SPHEROID["WGS_1984", 6378137.0, 298.257223563]], PRIMEM["Greenwich", 0.0], UNIT["Degree",0.0174532925199433]] Different regions feature different frozen soil attributes, and the specific attribute information can be found in the Word file.

    2020-06-04 0 View Details

  • Glacier inventory dataset of Bhutan (2000)

    This glacier inventory is supported by the International Centre for Integrated Mountain Development (ICIMOD) and the United Nations Environment Programme/Regional Resource Centre, Asia and The Pacific (UNEP/RRC-AP). 1.The glacier inventory incorporates topographic map data, and reflects the status of glaciers in the region in 2000. 2.The spatial coverage of the glacier inventory includes the following: Pa Chu Sub-basin,Mo Chu Sub-basin,Thim Chu Sub-basin,Pho Chu Sub-basin,Mangde Chu Sub-basin, Chamkhar Chu Sub-basin,Kuri Chu Sub-basin,Dangme Chu Sub-basin,Northern Basin, etc. 3.The glacier inventory includes the following data fields: glacier location, glacier code, glacier name, glacier area, glacier length, glacier thickness, glacier stocks, glacier type, glacier orientation, etc. 4.Data projection: Projection: Polyconic Ellipsoid: Everest (India 1956) Datum: Indian (India, Nepal) False easting: 2,743,196.4 False northing: 914,398.80 Central meridian: 90°0'00'' E Central parallel: 26°0'00' N Scale factor: 0.998786 For a detailed description of the data, please refer to the data file and report.

    2020-06-04 0 View Details

  • Map of the frozen soil distribution in the Republic of Mongolia (1990)

    A map of the frozen soil distribution in the Republic of Mongolia is digitized from the National Atlas of the Republic of Mongolia (Sodnom and Yanshin, 1990). This data set describes the distribution and general properties of permafrost, seasonally frozen soil, and low-temperature phenomena in the Republic of Mongolia. Two plates were specifically digitized. The first plate, with a scale of 1:12,000,000, describes four general frozen soil regions: (1) continuous and discontinuous permafrost; (2) island-like and sparse island-like permafrost; (3) sporadic permafrost; and (4) seasonally frozen soil. The second plate, with a scale of 1:4,500,000, describes 14 different terrain types. The terrain types are divided based on elevation, annual average temperature, permafrost thickness, melting depth, and freezing depth of seasonally frozen soil. The locations of the six types of low-temperature phenomena in Mongolia are also included: pingos, ice cones, hot karst, detachment failures, solifluction, and cryoplatation processes. The data are provided in the ESRI shape file format and can be downloaded from the US Ice and Snow Data Center.

    2020-06-04 0 View Details

  • Distribution map of frozen soil and subsurface ice in Russia (1:20,000,000) (1997)

    This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.

    2020-06-04 0 View Details

  • Inventory dataset of glacial lakes in Himachal Pradesh, India (2004)

    This glacial lake inventory receives joint support from the International Centre for Integrated Mountain Development (ICIMOD) and United Nations Environment Programme/Regional Resource Centre, Asia and the Pacific (UNEP/RRC-AP). 5. This glacial lake inventory referred to Landsat 4/5 (MSS and TM), SPOT(XS), IRS-1C/1D(LISS-III) and other remote sensing data. It reflects the current situation of glacial lakes with areas larger than 0.01 km2 in 2004. 6. Glacial Lake Inventory Coverage: Yamuna basin, Ravi basin, Chenab basin, Satluj River Basin and others. 7. The Glacial Lake Inventory includes glacial lake inventory, glacial lake type, glacial lake width, glacial lake orientation, glacial lake length from the glacier and other attributes. 8. Projection parameter: Projection: Albers Equal Area Conic Ellipsoid: WGS 84 Datum: WGS 1984 False easting: 0.0000000 False northing: 0.0000000 Central meridian: 82° 30’E Central parallel: 0° 0’ N Latitude of first parallel: 20° N Latitude of second parallel: 35° N For a detailed data description, please refer to the data file and report.

    2020-06-04 0 View Details